The average age of a Japanese farmer is now 67, and in all developed nations the average age is 60. Agriculture ministers from the G7 last year were worried about how this high age could lead to issues over food security. And as the world population is still increasing, the need for food also increases.
The Japanese government is increasing its support for more robots to be developed to help with farming. Japanese farms tend to be small and intensely farmed–rice paddies, often on terraced slopes, and greenhouses for vegetables. They are looking at very small robotic tractors to mechanize formerly manual processes in rice paddies and wearable devices, exoskeletons of sorts, to help elderly people, now that their strength is waning, continue to do the same lifting tasks with fruits and vegetables that they have done for a lifetime.
In the US farms tend to be larger, and for things like wheat farming a lot of large farm equipment is already roboticized. Production versions of many large pieces of farm equipment, such as those made by John Deere (see this story from the Washington Post for an example) have been capable of level 3 autonomous driving (see my blog post for a definition) for many years, and can even be used at level 4 with no one in the cab (see this 2013 YouTube video for an example).
There is now robotics research around the world for robots to help with fruits and vegetables. At robotics conferences one can see prototype machines for weeding, for precision application of herbicides and insecticides, and for picking fruits and vegetables. All these parts of farming currently require lots of labor. In the US and Europe only immigrants are willing to do this labor, and with backlashes against immigration it leaves the land owners with no choice but to look for robotic workers, despite the political rhetoric that immigrants are taking jobs that citizens want–it is just not true.
Tied into this is are completely new ways to do food production. We are starting to see more and more computer controlled indoor farming systems both in research labs in Universities and in companies, and as turn key solutions from small suppliers such as Indoor Farms of America and Cubic Farms, to name just two. The key idea is to put computation in the loop, carefully monitoring and controlling temperature, humidity, lighting, water delivery, and nutrient delivery. These solutions use tiny amounts of water compared to conventional outdoor farming. More advanced research solutions use computer vision to monitor crop growth and put that information into the controlling algorithms. So far we have not seen plays in this space from large established companies, but I have seen research experiments in the labs of major IT suppliers in both Taiwan and mainland China. We now have enough computation in the cloud to monitor every single plant that will eventually be consumed by humans. Farming still requires clouds, jut entirely different ones than historically. Indoor farms promise much more reliable sources of food than those that rely on outside weather cooperating.
Once food is grown it requires processing, and that too is labor intensive, especially for meat or fish of any sort. We are still a few years away from bionically grown meat that is practical, so in the meantime, again driven by lack of immigrants and a shortage of young workers, food processing is turning more and more to automation and robots. This includes both red meat cutting and poultry processing. These jobs are hard and unpleasant, and lead to many repetitive stress injuries. There are now many industrial robots in both the US and Australia being used to do some of these tasks. Reliance on robots will continue to grow as the population ages.